US009092276B2

a2 United States Patent
Allen et al.

US 9,092,276 B2
*Jul. 28, 2015

(10) Patent No.:
(45) Date of Patent:

(54) NATURAL LANGUAGE ACCESS TO
APPLICATION PROGRAMMING
INTERFACES

(71) Applicant: International Business Machines

Corporation, Armonk, NY (US)

(72) Corville O. Allen, Durham, NC (US);

Adrian X. Rodriguez, Research

Triangle Park, NC (US); Richard A.

Salmon, Durham, NC (US); Eric

Woods, Durham, NC (US)

Inventors:

(73) International Business Machines

Corporation, Armonk, NY (US)

Assignee:

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by O days.

This patent is subject to a terminal dis-
claimer.

@
(22)

Appl. No.: 14/585,649

Filed: Dec. 30, 2014

(65) Prior Publication Data

US 2015/0169385 Al Jun. 18, 2015

Related U.S. Application Data

Continuation of application No. 14/109,527, filed on
Dec. 17, 2013.

(63)

Int. Cl1.
GO6F 3/00
GO6F 9/44
GO6F 9/46
GO6F 13/00
GO6F 9/54
U.S. CL
CPC . GO6F 9/54 (2013.01); GOGF 9/466 (2013.01)

(51)
(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)

(52)

Unstructured, |
naturaliangusge |

(58) Field of Classification Search
None
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

7,024,363 Bl
7,058,567 B2

4/2006 Comerford et al.
6/2006 Ait-Mokhtar et al.

(Continued)

FOREIGN PATENT DOCUMENTS

WO WO02009021198 12/2009

OTHER PUBLICATIONS

Cavage, M, et al., “HTTP Signatures”, draft IETF document, Nov. 5,
2013.

(Continued)

Primary Examiner — Craig Dorais
(74) Attorney, Agent, or Firm — Robert H. Frantz; Jeffrey S.
LaBaw

(57) ABSTRACT

Users of online services may avoid having to gain knowledge
of'the intricacies of specific Application Programming Inter-
face (API) syntaxes and elements by using natural language
requests which are processed to extract components of the
request. The components are then used to find one or more
matches of known APIs, and then at least one structured API
call is constructed by mapping the request’s components to
the structured API call’s elements. The system can then
invoke the online service on behalf ofthe client, and return the
results to the client, or it can return the constructed structured
API callto the client. The known API details can be initialized
and updated by ingesting the description documents for the
structured APIs, and then using natural language processing
to extract components from the descriptions, which can then
be utilized in the matching process to further enhance the
results of the tool.

15 Claims, 4 Drawing Sheets

;
\f‘ "

eeeee

u
request describing

and orterta,

102

NL/ARI resolving

it
be
0 ipyoke web,
[seruge

US 9,092,276 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

7,849,048 B2 12/2010 Langseth et al.
7,962,470 B2 6/2011 Degenkolb et al.
8,156,101 B2 4/2012 Indeck et al.
8,694,305 B1* 4/2014 Groveetal.coocevrnin. 704/9
2005/0289124 Al 12/2005 Kaiser et al.
2006/0053133 Al 3/2006 Parkinson
2007/0203893 Al 8/2007 Krinsky et al.
2010/0070360 Al 3/2010 Gilbert et al.
2011/0270607 Al 11/2011 Zuev
2013/0218914 Al 8/2013 Stavrianou
2014/0075546 Al* 3/2014 Zengetal.ccoccoeenne. 726/17

OTHER PUBLICATIONS

Stack Overflow; “HTTP Request signature without session”,
retrieved on Dec. 10, 2013, from http://stackoverflow.com/questions/
4513335.

Allen, James F., et al., “Deep Semantic Analysis of Text”, retrieved on
Oct. 27, 2012 from http://aclweb.org/anthology-new/W/WO08/W08-
2227 pdf.

Wikipedia; “Smith-Waterman algorithm”; retrieved from http://en.
wikipedia.org/wiki/Smith-Waterman__algorithm on Feb. 5, 2013.

Declerk, T., et al.; “Linguistic and Semantic Representation of the
Thompson’s Motif-Index and Folk-Literature”; Retrieved on Aug.
28, 2013 from http://link.springer.com/chapter/10.1007/978-3-642-
24469-8_17.

Ait-Mokhtar; “Robustness beyond Shallowness:Incremental Deep
Parsing”; Retrieved on Aug. 28, 2013 from http://pageperso.lif.univ-
mrs.fr/~edouard.thiel/RESP/Semi/2006/ROUX/idp.pdf.

McCarty, L. Thorne, “Deep Semantic Interpretations of Legal
Texts”,retrieved on Nov. 27, 2012 from http://remus.rutgers.edu/
¢s440/icail07-acm.pdf.

Maggiani, R.; “Method for Customizing Queries Based on User
Preferences for Searching Online Content and Returning Customized
Results”; published by IP.com, Feb. 10, 2009.

Ferrucci, D.; “Building Watson; An Overview of the DeepQA
Project”; retrieved on Nov. 11, 2011 from http://www.stanford.edu/
class/cs124/ AlMagzine-DeepQA.pdf.

IBM; “High Throughput Computing on IBM’s Blue Gene/P”.
IBMResearch; “DeepQA Project FAQ’s”; retrieved on Sep. 13, 2011
from http://www.research.ibm.com/deepqa/faq.shtml.

IBM; “IBM System Blue Gene/P Solution”.

USPTO; Notice of Allowance from U.S. Appl. No. 14/109,527,
mailed on Dec. 12, 2014.

* cited by examiner

US 9,092,276 B2

Sheet 1 of 4

Jul. 28, 2015

U.S. Patent

80T

a0
R @OAUT01Pasn
aq 01 syuswingie
UM [V painidonns
Sulpuodsaliod
EINCRER|

1

(sanAioreBouraqun
uonealye
feuondo

e
U310 0] sjuawngie ciaraweled -
{m Idy peimonas J0 s)uaWNSe
Suipuadsaiiod LM 1dY PaJMONAIS
winiay
o T
&ynsay /./. /0T
SNONSIQUIY 0 Seeep i (531)AIO1ETOLIBII gt s o
panjosaun uoneayLe
. e jeuondo
~.
90T e .
sJziatueled o 82Inossd

sjuawngie aiow Io

auo Sunejndod |4y
PaInNanIs umauy

e 01 sdiysuonejas

gam Joj 1senbal
a8enSue|-|enleu
‘painionasun
palyled Jo pasinsy

pue sjuauodwod
IN depy

A

(e Hens:
Jo uosiep INGI)
a0IAIBS
Fuissazoad 41N

SOT.

8011I8S
dTN Suihojdwa

Ajleuondo

uyoay
dTN Suisn

1sanbas ssodwodaq

1

70T

159nbali
S3AI9084 JBAISS
10 921A18S Bulnjosal
1dv paJnionais
o1 8denSue |eanieN

RO ol

824nosed I
qom oy asanbe. [e
adenduel-jesnieu

|
|
_
|
_
|
_
|
|

€01

IDIALBS

Suinjosal |dv/IN
03 153nbau ywisuel

70T

elplapue
aounosal palisap ayy
Suiquasap 1sanbau
paimnIsun
‘a3en3ue| |eameu
sasodwod Jasn

10T

904n0sa.
gem Jeljiuiejun
ue 35N 03 S3YSIM
8DIABP-3UBI|D 4O JBsN

US 9,092,276 B2

Sheet 2 of 4

Jul. 28, 2015

U.S. Patent

(213 “Januas ‘ad1nuas)
N# jutodpu3

(018 19435 ‘@21MIBS)
T# Wiodpug

D
Junsanbay

¥0¢

SIUSWINOOP 84} WO}
suondLosep |dy
ay1 Jo syuauodwod
TN 011sanbau ayy
Jo sjuauodwoa N
91e[9.100 01 41N @5

siai1awesed
Jo siuawngle
YIM |dV paJnionis

4

suondiosap
IN Yum
Sidy psJnionas

P

90¢

SREEERFL

11€3 |dV paJanionais
pIng TIN woJy

(dejiuas
10 UOSIEMA INEI)
ERJIYEN
uissasoud 41N

S2INQUNE VeIIXT

4

S0T

(Shdv
paJn1ons paydlew
aly) yim pajeosse

sJe (shulodpua
PIym [jedsy

€0¢

WisisAs
d1N 2nuewas daap
e 0} uosuedwos
10} 1x81 Se 8|qe|leAe
8q 01 |dY pa4noniis
yoea xapu|

0T

Sauodpul
N 841 Jo yoes 01
sjuswa|a
14V pue |dv
yoea jo uonduossp
IN YoES 21830107

T0¢

pauuopad g ay s

uonIN|osad |dv/OIN

UOIYM 10} SBDIAISS

juiodpus N Jo yoes

10} spuaWndoq [dv
158U

(s)e)qex
uole|a.llod
1dv painnns
o1juodpug

N# ysnoys T4 ujodpus
yoes Joj (18 ‘pJom
‘1ad ‘saSew “TAIX 1x1)
Sjuawn2op aaualsjal |dy

.

o

US 9,092,276 B2

Sheet 3 of 4

Jul. 28, 2015

U.S. Patent

(018 ‘JenJss ‘ad1AIEs)
N# 1ulodpul

(s}ejge: /,
uonee.I0d
Id¥ painionais
o1 1utodpu3

[QUERSCYVEIRERINEN]
T# ilodpu3

hIVETT)
Junssnbay

#

10¢€

BIEMETE]
paiendod
YIIM [paanionas

4

SHUBWD S [dY
segaInqlile suisn
©d |4y painanns
pIng TN wod
S8INQUIIIEe 1De41X]

4

o e s 33 UM PBIRIDOSSE

Id¥
paUNINAYS paydew

aJe (sjurodpus
Uorym ||esay

A.i.....iix

¥0g
isenbsy
Sy1-jo oo sl
01 1UBA3|2U 10U 3e
10 “1asn a3 Aq pasn
Alleolo3siy usaq Jou
aney Jo ‘saouasagaud
3|iyoad s Jasn
14 10U Op YoIym
S|y Suneuruns
Aq saymeW MOLIEN

N

€0¢

O1N 8yl wouy adAy
Jamsue pue |eo8
By} yorewl yoiym

sIdv aydnpnw pury

T0¢

DN ay1 wouj adAy
Jamsue paJissp pue
|e08 ays auluBISq

,00¢
suonduosep
N Yaim
Sld¥ paJnidnns

ot e e o i

3

TOE

ERILEIRUET]
wouy UIN 1daouaiy)

(s
10 uosIeAN INEI)
ERINEN
Buissanoud 41N

AJoysiy pue
‘sanbai sy
0 IX31U0D
‘apyoud
54350

-
i
L
<
=)
-
&
=
ab
T

US 9,092,276 B2

Sheet 4 of 4

Jul. 28, 2015

U.S. Patent

o
o
v

¥ "3

0
v

0

(*010 ‘rejos A[euondo
‘K10118q ‘SUTRIA]
V) sorpddng omod

L0¥
(*219 “[1eq yorN ‘Osnowr
‘s101RIOUNUUE ‘SIONRAdS
‘sAerdsip ‘spreog£oy)
SOOTAD(] 20BJINU]
OS] 2I0W IO SUQ)

90%

(*019 “sonoqor
‘SI01MOR. ‘SIOSUDS
‘S10]0UT) SOOBJIOJUL
Kyreroadg :euond)

oY
(*019 ‘INSDH ‘wopowr
VA ‘wapoorang
TIM NV NV
SOOBJIOUI SULYIOM]OU
a10w 10 du() :[euond))

240%

$901A9p A10UWOW

p3e10)s o[qepear ondmwoo
pUE ‘SIOIRID[IDIL pUR
s108$9001d-00 [enOndo

‘s10$$9001d 210U IO SU()

(9]
)
<

(S0IM09)1YOIE OWOS UT) SIOALI(] 90TA(]

AN
)
<

(sormoaygore owos ur) (s)wo)sAq sunerdd()

~
ﬂ.

(somoaygore owos ur) sojoxdrojur uoreordde o[qeirod reuondo yiim sweisord uoneorddy

wope[d Sunndwo) pazijeiouan

m e e mmm e Emm e E E e E e e e e e E e e e E E e e e E E e e E e .- ==

US 9,092,276 B2

1
NATURAL LANGUAGE ACCESS TO
APPLICATION PROGRAMMING
INTERFACES

CROSS-REFERENCE TO RELATED
APPLICATIONS (CLAIMING BENEFIT UNDER
35U.8.C.120)

This is a continuation of U.S. application Ser. No. 14/109,
527, filed on Dec. 17, 2013 by Corville O. Allen, et al., and
currently under Notice of Allowance.

INCORPORATION BY REFERENCE

The related U.S. application Ser. No. 14/109,527, filed on
Dec. 17,2013 by Corville O. Allen, et al., is incorporated by
reference in its entirety including drawings.

FEDERALLY SPONSORED RESEARCH AND

DEVELOPMENT STATEMENT
None.
MICROFICHE APPENDIX
Not applicable.
FIELD OF THE INVENTION

This is a continuation of U.S. application Ser. No. 14/109,
527, filed on Dec. 17, 2013 by Corville O. Allen, et al., and
currently under Notice of Allowance. This invention relates
generally to methods and processes for programming com-
puters and designing program code, and particularly to sys-
tems and methods which allow for such work to be performed
in a natural language format.

BACKGROUND OF INVENTION

An Application Programming Interface (API singular,
APIs plural) refers the method or procedure by which one
computer program can use the functionality of another pro-
gram, or by which a user and request (invoke) execution of a
service according to his or her wishes. For example, a spread-
sheet application program running on a personal computer
may need to access a database program in order to retrieve
certain data from it. In order to do so, the spreadsheet program
must be programmed in a manner which allows it to invoke or
“call” the database program, which would include a variety of
control parameters (e.g., “arguments”) which indicate to the
database program what information is requested by the
spreadsheet program. These control parameters may include
the database file name, if known, and search or filter param-
eters, for example, a range of customer names, transaction
dates, transaction amounts, etc. In another context, a user may
wish to update his or her “status” statement on a social net-
working web account, so the user may have to operate a
sequence of functions such as logging in, authenticating,
selecting “status”, then selecting “edit”, then typing in the
status text, and then clicking “post™.

API often are “published” or made known to other pro-
grammers using a syntax which includes mandatory or
required arguments and optional arguments. Some APIs are
“exposed” to other programs so that other programs may
discover their existence and make use of their offered func-
tionality. Most API are also dependent on operating system
(OS) details, so an API for a database program running on a

10

20

25

30

40

45

55

60

2

first OS may be different than the API for the same database
program running on a second OS. Similarly, different revi-
sions of the same program product may have different APIs,
because new features may require the addition of mandatory
or optional arguments in order to exercise those features.

Some APIs conform to open or consortium-developed
“standards”. Such APIs allow programs developed by difter-
ent suppliers to interoperate with a high degree of certainty
that the interface will be successful. However, historically,
such standardized API only encompass a least common
denominator of features and functions, and often do not
include any feature or functions which are unique or specific
to just one vendor’s product. It is in these different functions
that the vendors provide competitive product features, so
many products offer both standardized and “extended” APIs,
where the unique functions are requested via the extensions to
the standardized API. As a result, if programmers of a new
product which their program to be independent and compat-
ible with all suppliers of a particular program type, such as
databases, they will restrict themselves from using any non-
standard API extensions, but this has a cost in that they are
unable to use any of the sometimes very effective proprietary
functions of some of the available products.

Still other API are entirely proprietary, and sometimes are
confidential or secret in nature. For example, in order to write
programs which will interface to certain high-value target
programs, such as stock trading systems, the programmer
must first obtain permission from the API owner to get the
details of the proprietary API, which usually involves some
degree of certification of the API user as a non-threat and a
non-disclosure agreement to maintain the confidence of the
APL

For programmers, the result is a landscape of proprietary,
standardized, and extended API for software developers to
use, which will accelerate their time-to-market by leveraging
existing program functionality from other programs and
remote services. As the API are constantly updated, revised,
and created, programmers face a considerable challenge to
remain aware of the most recent versions of each API.

For users, the problem is similar to that of the program-
mers, in which a user may become frustrated trying to figure
out how to accomplish similar, simple tasks (e.g., status
update, balance inquiry, etc.) on multiple online services,
each of which has a different user interface sequence to
accomplish the same operation. Even after learning these
sequences, the user may be frustrated by the smallest of
changes or updates to the user interfaces. Thus, tools to inte-
grate or provide a “dashboard” into multiple online services
of'the same type, such as a social networking dashboard or a
financial management tools dashboard, are becoming popu-
lar, which abstract the user from needing to know all the
specifics of each online account to accomplish the same
actions.

SUMMARY OF THE INVENTION

Users of online services may avoid having to gain knowl-
edge of the intricacies of specific Application Programming
Interface (API) syntaxes and elements by instead using natu-
ral language (NL) requests which are processed to extract NL,
components of the request. The NI components are then used
to find one or more matches of known APIs, and then at least
one structured API call is constructed by mapping the
request’s NL. components to the structured API call’s ele-
ments (e.g., arguments, parameters, etc.). The system can
then invoke the online service on behalf of the client, and
return the results to the client, or it can return the constructed

US 9,092,276 B2

3

structured API call to the client. The known API elements can
be initialized and updated by ingesting the description docu-
ments for the structured APIs, and then using natural lan-
guage processing (NLP) to extract optional and required API
elements from the descriptions, which can then be utilized in
the matching process to further enhance the results of the
system.

BRIEF DESCRIPTION OF THE DRAWINGS

The figures presented herein, when considered in light of
this description, form a complete disclosure of one or more
embodiments of the invention, wherein like reference num-
bers in the figures represent similar or same elements or steps.

FIG. 1 illustrates a logical process according to the inven-
tion for resolving an unstructured natural language user
request into a structured API call.

FIG. 2 sets forth a logical process for training a database of
structured APIs from natural language documentation regard-
ing those APIs, and for using those natural language docu-
ments as a guide to selecting a structured API to fulfill a user’s
unstructured natural language service request.

FIG. 3 depicts a brokering logical process for selecting an
optimal structured API (and the service it invokes) from a
plurality of structured APIs which ambiguously match the
user’s natural language request.

FIG. 4 illustrates a generalized computing platform suit-
able for combination with program instructions to perform a
logical process such as shown in FIG. 3 to yield a computer
system embodiment according to the present invention.

DETAILED DESCRIPTION OF
EMBODIMENT(S) OF THE INVENTION

Problems Recognized

The present inventors have recognized a problem in the art
which they believe is as-of-yet unrecognized by those skilled
in the art, and unsolved. Web-based Application Program-
ming Interfaces (APIs) allow the transfer of remote resources
across the web. Web-based APIs have evolved significantly
over time. In the early days of the Internet, APIs based on
Simple Object Access Protocol (SOAP) and Web Services
Description Language (WSDL) became a popular ways to
exchange structured data between networked resources, such
as between programs, servers, and services, especially in the
enterprise computing space. These APIs were very verbose
and highly structured, which burdens clients with rigid com-
pliance requirements and processing power to work with
SOAP and WSDL APIs.

A significant advancement in web-based APIs occurred
more recently, called REpresentational State Transfer
(REST). REST APIs favor simplicity via stateless transac-
tions, allowing clients to perform stateless Hyper Text Trans-
fer Protocol (HTTP) operations against simple Uniform
Resource Locator (URL) endpoints to access remote net-
worked computing resources. The data payload provided via
the API is usually eXtensible Markup Language (XML) or
JavaScript Object Notation™ (JSON). REST APIs quickly
became and currently remain one of the most popular choices
for transferring remote resources across the web.

For example, IBM Lotus Connections™ may expose (e.g.,
publish to other programs and systems) the following REST-
based endpoints to access activities, profile information, and
friends:

/connections/activities

/connections/profile

/connections/friends

10

15

20

25

30

35

40

45

50

55

60

65

4

These resources may be retrieved, created, updated, or
deleted via standard HTTP GET, POST, PUT, or DELETE
operations respectively.

While web-based APIs have improved in usability, the
present inventors recognize that they still have an inherent
complexity, wherein the developers must understand the API
(usually by way ofits documentation) in order to interact with
it. URL endpoints are hard-coded into consumer code to be
compliant with the documentation. This presents a problem
recognized by the inventors because application programs
become locked-in to a specific structured AP, such that their
developed code is “married” to the hard-coded APIs of the
web resources it needs to use. To interact with the Connec-
tions API above, for example, a programmer would need to
understand the syntax of each URL endpoint, the expected
headers and parameters, and the payload format and custom-
build compliant code.

As previously mentioned, standardized APIs allowing
greater portability of applications, but standards can take
years to develop and a lot of industry cooperation, and they
typically leave out unique functionality available only from
one source. As a result, service providers often just develop
their own custom API, even if other service providers have
substantially similar concepts (e.g., both Google+™ and
Facebook™ have news feeds, but their APIs are very differ-
ent).

As such, the present inventors recognized that even the
most advanced web APIs remain difficult and challenging for
programmers to use effectively, and to keep their products
up-to-date with the evolving APIs of the web resources on
which their products rely or with which their products inter-
act.

Therefore, at least one object of the present invention is to
provide a highly unstructured API via natural language to
programmers, which would then be translated to one or more
structured APIs without requiring the program designers to
familiarize or become experts with each of the targeted struc-
tured APIs.

For the purposes of the present disclosure, we will refer to
service endpoints as the service which is invoked by execu-
tion of an API call. And, we will refer to the required and
optional parameters, arguments, pointers, etc., of the API
collectively as “elements” of the API. For example, one par-
ticular type of API call is a Hyper Text Transfer Protocol
(HTTP) signature. An HTTP signature includes one or more
elements, such as URL, headers, body, etc. Specific examples
will be provided in the following paragraphs.

Review of the Available Technologies

In a search for available technologies to address this con-
tinuing challenge for software developers, the present inven-
tors found several existing technologies which fell short of
the need in one or more ways. The following review of the
existing art reflects the inventors’ best understanding of it,
and should not be considered an exhaustive consideration of
all technologies.

U.S. Pat. No. 7,849,048 to Justin Langseth, et al, entitled
“System and Method of Making Unstructured Data available
to Structured data Analysis Tools” provides the opposite
transformation as sought by the present inventors.

U.S. Pat. No. 7,962,470 to Marko Degenkolb, et al, entitled
“System and Method for Searching Web Services” discloses
an invention for searching remote services by analyzing uni-
versal descriptors of such services. It does not appear, how-
ever, to describe exposing or interacting with these services
via natural language queries. In other words, searching for

US 9,092,276 B2

5

available web resources does not alleviate the complexities,
and the required expertise thereof, of the APIs of the located
services.

United States pre-grant published patent application 2007/
0299127 Al to Matthias Kaiser, et al, entitled “Systems and
Methods for Processing Natural Language Queries”
described in an general sense systems for understanding and
acting on natural language queries (NLQ), but it does not
suggest or disclose how to relate those NLQs to structured
API usages.

United States pre-grant published patent application 2007/
0203893 to Anthony Seth Krinsky, et al, entitled “Apparatus
and Method for Federated Querying of Unstructured Data”
discloses how a request may be mapped to unstructured data,
wherein the unstructured results are used to formulate a struc-
tured query to a data store. Krinsky, however, employs a
considerably different approach than the present invention, as
will become evident in the following paragraphs.

And, United States pre-grant published patent application
2006/0053133 to David J. Parkinson entitled “System and
Method for Parsing Unstructured Data into Structured Data”
also employs a significantly different approach and method
than the present invention.

Processing of Natural Language Queries in General

The present inventors sought to define a new method and
process that would allow use of natural language queries
(NLQs) as a highly unstructured interface to access highly
structured APIs. In order to “understand” a user’s intent
expressed in a natural language query (NLQ), Natural Lan-
guage analysis (or processing or parsing) (NLP) can be
employed.

According to at least one aspect of the present invention, a
new NLQ may be compared to other previously-processed
NLQ’s to find and infer similarities between them. For
example, a newly-received NLQ of “find current household
income census data for persons living in Texas™ may be found
to have a high degree of similarity with a previously-handled
natural language request “2010 census database with data by
state and by household”. If the latter phrase has previously
been converted to a structured API call, then there is a high
degree of confidence in converting the former phrase into the
same structured API call.

A useful publicly-available document regarding realiza-
tion of a general purpose automatic Natural Language pro-
cessor is described in “Deep Semantic Analysis of Text” by
James F. Allen, et al., of the University of Rochester and the
Institute for Human and Machine Cognition (document WO8-
0227 from the ACL). One approach to advancing beyond
keyword searching is “intent-centric” processing as proposed
by Scott Brave, et al., in WIPO patent application WO 2009/
021198 Al. The present inventors do not believe this
approach, however solves the presently addressed problem,
as will be evident by the following paragraphs.

The present invention is set forth in at least one exemplary
embodiment as an application of or manner of using a Natural
Language analyzer platform, sometimes also referred to as
NLP parsing. This platform may be a system such as the IBM
Watson™ system, such as is described in “Building Watson:
An Overview of the DeepQA Project” (Stanford University
online, and Al Magazine, Fall 2010 issue). Another useful,
publicly-available teaching regarding the availability of NLLP
analyzers which may be suitable for adapting and improving
to the present invention may include those described by Kon-
stantin Zuev in United States Pre-Grant Published Patent
Application 2011/0270607 A1 (Nov. 3, 2011); the Thomp-
son’s Motif-Index Literature system of Thiery Declerk, et al.,
as published in “Research and Advanced Technology for

10

15

20

25

30

35

40

45

50

55

60

65

6
Digital Libraries: Lecture Notes in Computer Science”, vol.
6966, 2011, pp. 151-158; and such as that described by Sala
Ait-Mokhtar, et al., in U.S. Pat. No. 7,058,567 (Jun. 6, 2006).

Graphical logical forms for representation of text can be
created using one of several known methods, such as that
proposed by James F. Allen, Mary Swift, and Will de Beau-
mont, of the University of Rochester and the Institute for
Human and Machine Cognition (Association for Computer
Linguistics (ACL), anthology document W08-2227).

For the purposes of this disclosure, we will refer to the key
words and phrases in a natural language request which are
identified by natural language processing as “components” of
the request. Further, when deep semantic analysis reveals
relationships between components, such relationships will
also be components. For example, the NL request “give me all
my new messages” would be parsed by NLP into three com-
ponents “give”, “me”, and “all new messages”. And, relation-
ships of “give < > to me” and “give < > all new messages”
would also be resulting components determined by NLP.

A First Exemplary Embodiment

In one available embodiment, a client device (e.g., a con-
sumer’s cellphone, tablet computer, desktop computer) needs
to access one or more resources (e.g., social media activities,
unread messages, news postings, friend requests, etc.) from
one or more endpoint service providers. Rather than comply-
ing with multiple structured APIs to request the resource(s),
the user of the client device formulates a request for the
resource in an unstructured natural language expression. The
client device then sends the unstructured NL query to the
service provider’s central API endpoint. The service provider
system, using an embodiment of the present invention, parses
the unstructured query according to natural language process-
ing to extract the query’s components, maps the components
to its own structured API elements, executes the API call with
the populated elements, finally returning an appropriate
response, often structured data, to the requesting client. If the
results of the NLP parsing is inconclusive or ambiguous, such
that more than one API call perhaps would meet the inferred
desire of the NL query, then one or more additional clarifica-
tion processes may be performed, including using one or
more interrogatory interfaces (e.g., pop-up menus, text mes-
sages, check lists, radio buttons, etc.) to a user, brokering for
an API using other criteria (explained in following para-
graphs), or using additional transactions transparently to the
user.

Turning now to FIG. 1, such a process is illustrated:

Step 101. A client device user wants to access a resource
(e.g. status updates, new messages, latest news feed
entries, etc.) at an endpoint service.

Step 102. The client device user (or a process running on
the client device) composes an unstructured query in
natural language describing desired resource. The client
device user may construct query however he, she (or it in
the case of a program being the client user) desires,
without regard to API standards, syntax or structure.

Step 103. The client device sends the unstructured query to
an Natural Language Query/API (NLQ/API) resolving
service, such as sending to a central URL at the remote
endpoint, for example:

a. using a standard HTTP POST operation;

b. in which the payload may simply be string with
unstructured query; and

c. optionally may also send the query in parameter, head-
ers, or other HTTP operations.

US 9,092,276 B2

7

d. Alternatively, the client device may send the NL query
to a non-descript destination, and the server at the
destination may detect that it is an unstructured
request (e.g. not compliant as an API call), and divert
the NLQ to an embodiment of the NLQ/API inven-
tion.

Step 104. The NLQ/API resolving service, or the endpoint
service provider as the case may be, receives unstruc-
tured query from client.

Step 105. The NLQ/API service decomposes client’s
unstructured query into semantic NI components using
natural processing, such as those functions available by
an IBM Watson system or a similar system.

Step 106. Based on semantic relationships, parts of speech,
keywords, etc, NL. components are identified in the
NLQ, and the NLQ/API service maps the query and its
components to one of its structured APIs and its ele-
ments.

a. The NLQ/API service may map the query to another
endpoint service, enabling both unstructured and tra-
ditional APIs to be used in conjunction.

b. For example, natural language query “give me my
activities over the last day” may be decomposed to NL.
components “my activities” and “last day”, and then
mapped to structured APl “/connections/
activities?timeframe=today”, where “/connections”
is the endpoint selected, “activities” is an API ele-
ment, and “timeframe=today” is an API element.

c¢. The mapping operations may be performed automati-
cally, as disclosed in more details in the following
paragraphs, which includes in at least one embodi-
ment building a library of known structured APIs by
optionally ingesting API documentation.

Step 107. If necessary, the NLP/API service may request
additional details from the requesting client to clarify the
unstructured query. Clarification of ambiguous or
incomplete queries is described in more detail in the
following paragraphs. Or, the NLQ/API service may
simply return an error describing the problem, which
likely would result in the requesting client rephrasing
the query and re-submitting it.

Step 108. After mapping the components of the unstruc-
tured query to a selected API and its elements to access
the desired resource, the NLQ/API service returns the
requested constructed API with value-populated ele-
ments to the requesting client for it to use. Subsequently,
the client may store the constructed API call for repeat
use (e.g., cached), or it may use it once and discard it
after completion.

Here is a more detailed example of operation of this
embodiment. Presume that a particular product or platform,
such as the IBM Lotus Connections™ social software plat-
form, may expose the following REST operations pertaining
to a user’s activities, in which each operation requires a well-
formed (inflexible and structured) HTTP signature to use
(e.g. REST HTTP signatures are the selected, structured API
targeted in this example):

a. HTTP GET /connections/activities

b. HTTP GET /connections/activities/1234

¢. HTTP POST /connections/activities {“This is my status
post!”}

d. HTTP PUT /connections/activities/1234 {“I am chang-
ing my previous status!”}

e. HT'TP DELETE /connections/activities/1234

These REST API calls will get all activities, get a specific
activity by identification (ID), create a new activity, update an
activity, and delete an activity, respectively. Without benefit

10

20

25

30

35

40

45

50

55

60

65

8

of'an embodiment of the present invention, programmers are
expected to learn and hardcode logic for each of these REST
operations. With benefit of an embodiment of the invention,
programmers are free to work with Lotus Connections Activi-
ties with flexibility and consistency in a natural language
format, wherein phrases will be mapped (—) such as the
following examples:

a. “Give me my activities”—=HTTP POST /connections/
watson

b. “Give me my activity with id of 1234”—

HTTP POST /connections/watson

c. “Post a status update of “This is my status post!”—
HTTP POST /connections/watson

d. “Update my status post with id of 1234 with ‘I am
changing my previous status!”—HTTP POST /connec-
tions/watson

e. “Delete my activity with id of 1234”—HTTP POST
/connections/watson

From this example, one can see some distinct advantages of
using embodiments of this invention over anything that exists
today:

1. Client devices are free to formulate a query foraresource
however they want to using natural language; this means
no need for standards across vendors or service provid-
ers.

2. The service provider’s REST API may change on the
back-end, but client’s queries will remain valid. There’s
no need for clients to update their applications as new
API versions are released.

3. Simplicity; developers do not need to spend hours read-
ing syntax details of a service provider’s documentation.
They’re free to interact with resources they want with
easily understood natural language queries.

4. Natural Language Processing Systems, such as IBM’s
Watson™ platform, may be used to provide this natural
language functionality to service providers.

Here is another detailed example of operation of this
embodiment. A user’s cellphone needs to retrieve the latest
activities in a news feed from multiple social media platforms
such as Facebook™, Google+™, and Twitter™ on the user’s
behalf. Presuming that the client device is previously identi-
fied and previously authenticated, the user’s cellphone issues
a query in natural language to each of these remote services
such as “Give me the latest activities” using an unstructured
request to an NLQ/API service according to the present
invention, such as:

HTTP POST /facebook/watson/, Payload: “Give me the
latest activities”

HTTP POST /google/watson/, Payload: “Give me the lat-
est activities”

HTTP POST /twitter/watson/, Payload “Give me the latest
activities”

Here, the natural language processor would identify the NL
components of the NL request as:

(a) “give” (e.g., retrieve, download, GET, etc.),

(b) “me” (to the requesting client device), and

(c) “latest activities” (e.g., updates, unread messages, new-
est postings, recent news entries, etc.).

Shown symantically, the request would be parsed as fol-

lows:

<give><me>the<latest
activities>=<a>the<c>=<retrieve+download+
get><updates+unread_msgs+ . . . >

These potential synonyms for the NL. components of the
NL request are then used to search for known APIs which
include these operations and/or elements.

US 9,092,276 B2

9

Each social media service receives the unstructured query
and maps it to its own proprietary REST API, as previously
described. Subsequently, each service responds by transmit-
ting or downloading the user’s most recent activities to the
cell phone, following which the user’s phone may consolidate
and render them in a central notification center or on another
user interface. Contrasting this with how such functionality
must be performed today, in which the cellphone’s Operating
System is hardcoded to interact specifically with the three
structured social media platform APIs, and in which the oper-
ating system must be maintained to stay up-to-date with
changes to each service provider’s API, one can readily see
the advantage of the embodiments of the present invention.

Additional Exemplary Embodiments

In another embodiment, a human user may directly issue
queries to a remote endpoint server in natural language. When
the endpoint returns the requested resource, the user’s device
may render it in some appropriate way.

In yet another embodiment, service platforms can be
slightly modified to receive unstructured natural language
requests and queries, and upon detection of such, could for-
ward the requests and queries to a third-party NLQ/API reso-
lution service, which would then convert it to a structured API
compliant with that of the service platform on behalf of the
service platform. In this manner, open or standardized APIs
could be easily supported by centralized implementation, as
well as proprietary APIs could be kept more secure whereas
only the third-party resolution service would be required to
“know” the proprietary APIs.

Mapping Unstructured Requests to Structured Requests

As previously mentioned, one step or process within some
embodiments of the present invention is to map (106) the NL
components of the unstructured request to elements of a
known structured API call (200), where the NL. components
are extracted from the unstructured request and their relation-
ships to the each other and the request have been detected by
natural language processing.

Maps of NL components to structured APIs can be created
manually for the purposes of some embodiments of the inven-
tion. Indeed, some service providers are likely to map
unstructured request components to elements of conven-
tional, structured APIs. This will facilitate backwards com-
patibility with existing structured APIs, leverage years of
experience in building APIs, and provide clients with two
alternative choices for interacting with the service provider.
While this approach may be useful for the limited scenario of
initial deployment, it is not anticipated to be optimal for
on-going incorporation of new APIs and revisions to existing
APIs.

Therefore, an optional aspect of some embodiments of the
present invention is a method of mapping unstructured
requests to structured API endpoints by correlating natural
language descriptions of each API operation with its API
elements (e.g., arguments, parameters, options, etc.), such as
an HTTP signature with elements of URL, headers, param-
eters, message body, encoding, etc. In essence, a natural lan-
guage processing system, such as IBM’s Watson system, can
be employedto “learn” each new or revised structured API via
the natural language documentation which is intended for
human programmers to read and reference. This automatic
learning of API functionality and elements will facilitate
automatic creation of structured API calls when unstructured
requests are received, while avoiding or reducing manual
effort to create the NL component to API element maps. This
aspect of the present invention will enable unstructured

10

15

20

25

30

35

40

45

50

55

60

65

10

requests to be mapped to a structured API calls automatically,
meaning less code to build and maintain and affording flex-
ibility for the structured API to change. With an embodiment
equipped to learn structured APIs from API documentation,
the documentation can be automatically ingested by a natural
language deep semantic analysis system to find structured
API functionality definitions, and to associate their API ele-
ments (e.g., arguments, parameters, options, etc.) with their
functional descriptions expressed in natural language text.
Then, when a new unstructured request is received, the NL
components in the unstructured request can be correlated to
the NL descriptions of the API elements as found in the API
documentation. Highly-correlated API elements would be
declared as probable matches to the components of the NL
components of the unstructured request, and then that par-
ticular structured API would be selected (or offered) and
constructed with the elements to be returned to the client.

In such an embodiment according to this aspect of the

present invention, the NLQ/API resolving system “learns”

the service provider’s API documentation, such that each API
endpoint is documented in natural language and has a defined
set of required and optional API elements, such as an HTTP
signature. The system then receives unstructured requests
from clients. The system maps client’s unstructured requests
to natural language descriptions of API operations in the

APT’s documentation. The system then optionally constructs

and executes an appropriate structured API call, such as an

HTTP request with corresponding elements, which complies

with the API’s documentation requirements on behalf of the

client, or it returns the constructed structured API to the
requesting client for its own use or storage. In the former
arrangement, results from executing the request on behalf of
the requesting client are returned to the client. For example,

turning to FIG. 2:

Step 201. The NLQ/API system ingests service provider’s
REST API documentation.

Step 202. The NLQ/API system correlates the natural lan-
guage description from the documentation of the service
provider’s REST API operations with the API elements
(URL endpoints, headers, parameters, payload formats,
etc.).

Step 203. The NLQ/API system indexes the REST API
documentation to make it a viable evidence database to
be added of the NLP deep QA corpus for subsequent
searching, such as is used in IBM Watson™.

Step 204. After the NLLQQ/API system has received a natural
language unstructured request for use of an endpoint
from a requesting client, in which the client’s request
contains natural language description of resource being
requested (e.g., “Give me my latest activities from
today”), the NLQ/API system utilizes a method such as
that shown in FIG. 1a or FIG. 15 to map the NL. com-
ponents in the request to natural language description(s)
(200" from the API documentation to identify a match-
ing REST operation.

a. Both the NL request and the NL documentation may
be decomposed and annotated with semantic relation-
ships, concepts, keywords, etc.

b. These annotations in the unstructured request and
the—API documentation may then be compared to
find a high-confidence match between the requested
functionality and the available, known structured
APIs.

. Deep semantic NLP systems, such as IBM Watson™,
are capable of making these NL-based matches, e.g.,
matching two sets of natural language expressions
based on a series of annotators, scorers, Al etc.

o

US 9,092,276 B2

11

Step 205. Based on initial processing of the structured API
documentation, the NLQ/API system recalls the API
elements (e.g., URL endpoint, HTTP operation, head-
ers, parameters, payload format, etc.) for the target struc-
tured API operation.

Step 206. Based on the requirements of the structured API
operation, the NLQ/API system extracts these attributes
from the NL components of the requesting client’s natu-
ral language request.

a. If any required attributes are missing, the NLQ/API
system may return an error describing the problem to
the requesting client.

b. Alternatively, the NLQ/API system may request these
missing attributes from the requesting client by means
of a state-full conversation with the client.

c. Still alternatively, if required attributes are missing,
the NLQ/API system may automatically populate
attributes based on pre-programmed “intuition”.

(1) For example, a certain REST API may require a
timeframe when retrieving a user’s activity news
feed.

(2) If the requesting client does not supply a time-
frame, the NLQ/API system may supply an “intui-
tive” default value into a required API element,
such as “today”.

(3) Intuitive default values may be derived from the
ingested and NL-processed -API documentation,
for example.

d. The NLQ/API resolving system constructs a struc-
tured API call including required an optional elements
(parameters, arguments, etc.) populated with values
corresponding to the extracted attributes that comply
with the API’s documentation.

Step 207. The NLQ/API system optionally submits the
constructed API callon behalf of the requesting client to
the identified endpoint, or it may return the constructed
API (with populated element values) to the requesting
client.

a. If the constructed API call is submitted to the identi-
fied endpoint on behalf of the client, the NLQ/API
system the receives the service’s results from the
execution of the API call, and it then forwards those
results to the client.

b. If the constructed API call (with populated element
values) is returned to the requesting client, then the
client can submit it to the identified endpoint and
receive the results directly from the invoked service,
or the client may store the constructed API call for
later use.

The present inventors envision at least one embodiment
that primarily uses or places higher priority on REST API
operations above other types of APIs (proprietary, SOAP,
WSDL, etc.).

Advanced API Brokering

While the embodiment features and aspects set forth in the
previous paragraphs provide very useful improvements over
the prior art, there are further advanced optional embodiment
features which we now describe in detail. These will be espe-
cially useful for integrator social tools, such as tools which
attempt to provide a user with a single view and control of
multiple social accounts such as Google+™, FaceBook™,
Lotus Connections™, Twitter™, Instagram™, Pinterest™,
LinkedIn™, Plaxo™, Focus™, Netparty™, Ryze™, Talkbi-
znow™ and Xing™. However, embodiments and methods of
usage of embodiments of the invention are not limited to
social networking platforms, but may also be useful for pro-
viding users with meta-agents that integrate other types of

15

20

25

40

45

60

65

12

accounts, such as online banking accounts, online financial
trading accounts, online news accounts and feeds, online
class and training accounts, etc In each of these types or
classes of online services, there are similar user desires which
can be expressed in natural language the same way for each
species of the class, but in which each species requires a
specific structured API which may not be compatible with
other species in the class.

So, a further object of these advanced embodiments
according to the present invention is to use natural language
as much as possible to interact with any service, group of
services, or set of service features available to a user. The
advanced features aim to provide a smarter API broker which
selects one of multiple available structured APIs according to
the user’s context and user’s profile to be more intelligent and
intuitive when brokering a natural language, unstructured
API service request.

The advancement utilizes the user’s profile, the context of
the request, and a record ofhistorical actions to choose an API
(e.g., broker an API) in response to an otherwise ambiguous
natural language request to an underlying API service pro-
viding the right service calls based on the user’s data.

The Unstructured API broker receives a user’s profile
information, context of the request, and a log of historical
actions when being prompted to broker an API resolving
request. The broker analyzes the question and finds the goal
and key terms in natural language text, and finds similar goals
and terms within the users profile and historical actions. The
broker then queries to find services that match that goal and
terms, and subsequently it finds the appropriate service that
matches the specific user’s interests corresponding to the
user’s profile, or historical data, or context of the request, or
a combination of profile, history and context. A structured
API call is then constructed for the selected service, accord-
ing to the processes described in the previous paragraphs, and
optionally the constructed API call is invoked by the NLQ/
API system on behalf of the requesting client, or the con-
structed API call is returned to the requesting client.

Turning to FIG. 3, responsive to a requesting client (e.g., a
user—or another computer-executed process)—an endpoint
service in natural language:

Step 301. The request for the endpoint service is forwarded
to or intercepted by the API broker system, including,
optionally, one or more of the context of the request, the
user’s profile information, and available historical data.

Step 302. The API broker system analyzes the request for
the requester’s implicit goal and desired answer type.

Step 303. The API broker system then analyzes known
APIs that describe or provide such services which would
meet the requester’s goal and/or answer types.

Step 304. The API broker system then narrows those pos-
sible matches to only services that match the users pro-
file information, historical records (e.g., historical posts,
historical data received, the last action performed by the
user, etc.), and/or the context of the request (the user is
actively using a calendar application, or the user is
actively searching for travel arrangements, etc.).

Step 307. The endpoint service that more closely aligns by
a match of the terms from the user information and
recent historical information is invoked via a con-
structed API call, and then results returned to the
requesting client in the manners described in the fore-
going paragraphs.

Computer Program Product

As will be appreciated by one skilled in the art, aspects of
the present invention may be embodied as a system, method
or computer program product. Accordingly, aspects of the

US 9,092,276 B2

13

present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module” or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied in one
or more computer readable medium(s) having computer read-
able program code embodied thereon.

Any combination of one or more computer readable medi-
um(s) may be utilized. The computer readable medium may
be a computer readable signal medium or a computer read-
able storage medium. A computer readable storage medium
may be, for example, but not limited to, an electronic, mag-
netic, optical, electromagnetic, infrared, or semiconductor
system, apparatus, or device, or any suitable combination of
the foregoing. More specific examples (a non-exhaustive list)
of the computer readable storage medium would include the
following: an electrical connection having one or more wires,
a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only
memory (CD-ROM), an optical storage device, a magnetic
storage device, or any suitable combination of the foregoing.
In the context of this document, a computer readable storage
medium may be any tangible medium that can contain, or
store a program for use by or in connection with an instruction
execution system, apparatus, or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof. A com-
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, including
but not limited to wireless, wireline, optical fiber cable, RF,
etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the present invention may be written in any com-
bination of one or more programming languages, including
an object oriented programming language such as Java,
Smalltalk, C++ or the like and conventional procedural pro-
gramming languages, such as the “C” programming language
or similar programming languages. The program code may
execute entirely on the user’s computer, partly on the user’s
computer, as a stand-alone software package, partly on the
user’s computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user’s computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the
Internet using an Internet Service Provider).

Aspects of the present invention are described below with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations and/
or block diagrams, and combinations of blocks in the flow-
chart illustrations and/or block diagrams, can be imple-

10

15

20

25

30

35

40

45

50

55

60

65

14

mented by computer program instructions. These computer
program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or other
programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro-
cessing apparatus, create means for implementing the func-
tions/acts specified in the flowchart and/or block diagram
block or blocks.

These computer program instructions may also be stored in
a computer readable medium that can direct a computer, other
programmable data processing apparatus, or other devices to
function in a particular manner, such that the instructions
stored in the computer readable medium produce an article of
manufacture including instructions which implement the
function/act specified in the flowchart and/or block diagram
block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara-
tus or other devices to produce a computer implemented
process such that the instructions which execute on the com-
puter or other programmable apparatus provide processes for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer program
products according to various embodiments of the present
invention. In this regard, each block in the flowchart or block
diagrams may represent a module, segment, or portion of
code, which comprises one or more executable instructions
for implementing the specified logical function(s). It should
also be noted that, in some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block diagrams
and/or flowchart illustration, can be implemented by special
purpose hardware-based systems that perform the
Suitable Computing Platform

The preceding paragraphs have set forth example logical
processes according to the present invention, which, when
coupled with processing hardware, embody systems accord-
ing to the present invention, and which, when coupled with
tangible, computer readable memory devices, embody com-
puter program products according to the related invention.

Regarding computers for executing the logical processes
set forth herein, it will be readily recognized by those skilled
in the art that a variety of computers are suitable and will
become suitable as memory, processing, and communica-
tions capacities of computers and portable devices increases.
In such embodiments, the operative invention includes the
combination of the programmable computing platform and
the programs together. In other embodiments, some or all of
the logical processes may be committed to dedicated or spe-
cialized electronic circuitry, such as Application Specific
Integrated Circuits or programmable logic devices.

The present invention may be realized for many different
processors used in many different computing platforms. FI1G.
4 illustrates a generalized computing platform (400), such as
common and well-known computing platforms such as “Per-
sonal Computers”, web servers such as an IBM iSeries™

US 9,092,276 B2

15

server, and portable devices such as personal digital assistants
and smart phones, running a popular operating systems (402)
such as Microsoft™ Windows™ or IBM™ AIX™, UNIX,
LINUX, Google Android™, Apple iOS™, and others, may be
employed to execute one or more application programs to
accomplish the computerized methods described herein.
Whereas these computing platforms and operating systems
are well known an openly described in any number of text-
books, websites, and public “open” specifications and recom-
mendations, diagrams and further details of these computing
systems in general (without the customized logical processes
of the present invention) are readily available to those ordi-
narily skilled in the art.

Many such computing platforms, but not all, allow for the
addition of or installation of application programs (401)
which provide specific logical functionality and which allow
the computing platform to be specialized in certain manners
to perform certain jobs, thus rendering the computing plat-
form into a specialized machine. In some “closed” architec-
tures, this functionality is provided by the manufacturer and
may not be modifiable by the end-user.

The “hardware” portion of a computing platform typically
includes one or more processors (404) accompanied by,
sometimes, specialized co-processors or accelerators, such as
graphics accelerators, and by suitable computer readable
memory devices (RAM, ROM, disk drives, removable
memory cards, etc.). Depending on the computing platform,
one or more network interfaces (405) may be provided, as
well as specialty interfaces for specific applications. If the
computing platform is intended to interact with human users,
it is provided with one or more user interface devices (407),
such as display(s), keyboards, pointing devices, speakers, etc.
And, each computing platform requires one or more power
supplies (battery, AC mains, solar, etc.).

CONCLUSION

The terminology used herein is for the purpose of describ-
ing particular embodiments only and is not intended to be
limiting of the invention. As used herein, the singular forms
“a”, “an” and “the” are intended to include the plural forms as
well, unless the context clearly indicates otherwise. It will be
further understood that the terms “comprises” and/or “com-
prising,” when used in this specification, specify the presence
of'stated features, steps, operations, elements, and/or compo-
nents, but do not preclude the presence or addition of one or
more other features, steps, operations, elements, components,
and/or groups thereof, unless specifically stated otherwise.

The corresponding structures, materials, acts, and equiva-
lents of all means or step plus function elements in the claims
below are intended to include any structure, material, or act
for performing the function in combination with other
claimed elements as specifically claimed. The description of
the present invention has been presented for purposes of
illustration and description, but is not intended to be exhaus-
tive or limited to the invention in the form disclosed. Many
modifications and variations will be apparent to those of
ordinary skill in the art without departing from the scope and
spirit of the invention. The embodiment was chosen and
described in order to best explain the principles of the inven-
tion and the practical application, and to enable others of
ordinary skill in the art to understand the invention for various
embodiments with various modifications as are suited to the
particular use contemplated.

It should also be recognized by those skilled in the art that
certain embodiments utilizing a microprocessor executing a

10

15

20

25

30

35

40

45

50

55

60

65

16

logical process may also be realized through customized elec-
tronic circuitry performing the same logical process(es).

It will be readily recognized by those skilled in the art that
the foregoing example embodiments do not define the extent
or scope of the present invention, but instead are provided as
illustrations of how to make and use at least one embodiment
of the invention. The following claims define the extent and
scope of at least one invention disclosed herein.

What is claimed is:

1. A method for handling a user request for invoking a
computer service through an Application Programming Inter-
face, comprising:

performing a first natural language (NL) analysis by a

computer on one or more computer service user pro-
gramming documents, wherein API user documents
describe in structured natural language one or more
structured Application Programming Interfaces (APIs)
with one or more API elements, and wherein each API
element corresponds to a parameter or argument to use
or invoke the computer service;

extracting by a computer the one or more API elements

from a user programming document according to the
first NL analysis;

performing a second NL analysis by the computer on an

unstructured request from a client to use or invoke the
computer service, the unstructured request comprising
natural language containing one or more request com-
ponents;

matching by the computer the one or more request compo-

nents to the one or more API elements;
constructing by the computer a structured API call using
the matching request components for API elements; and

performing by the computer one or more operations
selected from the group consisting of submitting the
constructed structured API call to the computer service
on behalf of the client, returning the constructed struc-
tured API call to the requesting client, and returning a
result from an invoked corresponding computer service
to the requesting client.

2. The method as set forth in claim 1 wherein the construct-
ing of a structured API call further comprises constructing a
Hyper Text Transfer Protocol signature.

3. The method as set forth in claim 1 further comprising,
responsive to detecting by the computer that a plurality of
APIs match the request components, providing by the com-
puter an interrogatory with the requesting client to obtain
further information regarding the unstructured request, and
repeating the steps of performing natural language analysis
on the unstructured request, extracting request components,
mapping request components to API elements, constructing
the structured API call, and performing one or more opera-
tions.

4. The method as set forth in claim 1 further comprising,
responsive to detecting by the computer that a plurality of
APIs match the request components, brokering for a struc-
tured API by the computer by eliminating one or more match-
ing structured APIs to disqualify one or more APIs according
to one or more additional criteria selected from the group
consisting of a user profile, a user history of operations, and a
context associated with the unstructured request.

5. The method as set forth in claim 1 wherein the requesting
client comprises a user interface to a user of a client device.

6. A computer program product for handling a user request
for invoking a computer service comprising:

a computer-readable, memory storage device; and

one or more computer program instructions embodied by

the computer-readable, memory storage device, for

US 9,092,276 B2

17

causing a computer processor upon execution to per-
form operations comprising:

performing a first natural language (NL) analysis on one or

more computer service user programming documents,
wherein API user documents describe in structured natu-
ral language one or more structured Application Pro-
gramming Interfaces (APIs) with one or

more API elements, and wherein each API element corre-

sponds to a parameter or argument to use or invoke the
computer service;

extracting the one or more API elements from a user pro-

gramming document according to the first NL analysis;
performing a second NL analysis on an unstructured
request from a client to use or invoke the computer
service, the unstructured request comprising natural lan-
guage containing one or more request components;
matching the one or more request components to the one or
more API elements;

constructing a structured API call using the matching

request components for API elements; and

performing one or more operations selected from the group

consisting of submitting the constructed structured API
call to the computer service on behalf of the client,
returning the constructed structured API call to the
requesting client, and returning a result from an invoked
corresponding computer service to the requesting client.

7. The computer program product as set forth in claim 6
wherein the constructing of a structured API call further com-
prises constructing a Hyper Text Transfer Protocol signature.

8. The computer program product as set forth in claim 6
wherein the computer program instructions further comprise
computer program instruction for, responsive to detecting by
a computer that a plurality of APIs match the request compo-
nents, providing an interrogatory with the client to obtain
further information regarding the unstructured request, and
for repeating the steps of performing the second natural lan-
guage analysis on the unstructured request, extracting request
components, matching request components to API elements,
constructing the structured API call, and performing the one
or more operations.

9. The computer program product as set forth in claim 6
wherein the computer program instructions further comprise
computer program instruction for, responsive to detecting by
a computer that a plurality of APIs match the request compo-
nents, brokering for a structured API by a computer by elimi-
nating one or more matching structured APIs to disqualify
one or more APIs according to one or more additional criteria
selected from the group consisting of a user profile, a user
history of operations, and a context associated with the
unstructured request.

10. The computer program product as set forth in claim 6
wherein the requesting client comprises a user interface to a
user of a client device.

11. A system for handling a user request for invoking a
computer service comprising:

a computer processor;

a computer-readable, memory storage device; and

one or more computer program instructions embodied by

the computer-readable, memory storage device, for

10

15

20

25

30

35

40

45

50

55

18

causing the computer processor upon execution to per-

form operations comprising:

performing a first natural language (NL) analysis on one
or more computer service user programming docu-
ments, wherein API user documents describe in struc-
tured natural language one or more structured Appli-
cation Programming Interfaces (APIs) with one or
more API elements, and wherein each API element
corresponds to a parameter or argument to use or
invoke the computer service;

extracting the one or more API elements from a user
programming document according to the first NL
analysis;

performing a second NL analysis on an unstructured
request from a client to use or invoke the computer
service, the unstructured request comprising natural
language containing one or more request compo-
nents;

matching the one or more request components to the one
or more API elements;

constructing a structured API call using the matching
request components for API elements; and

performing one or more operations selected from the
group consisting of submitting the constructed struc-
tured API call to the computer service on behalf of the
client, returning the constructed structured API call to
the requesting client, and returning a result from an
invoked corresponding computer service to the
requesting client.

12. The system as set forth in claim 11 wherein the con-
structing of a structured API call further comprises construct-
ing a Hyper Text Transfer Protocol signature.

13. The system as set forth in claim 11 wherein the com-
puter program instructions further comprise computer pro-
gram instruction for, responsive to detecting by a computer
that a plurality of APIs match the request components, pro-
viding an interrogatory with the client to obtain further infor-
mation regarding the unstructured request, and for repeating
the steps of performing the second natural language analysis
on the unstructured request, extracting request components,
matching request components to API elements, constructing
the structured API call, and performing the one or more
operations.

14. The system as set forth in claim 11 wherein the com-
puter program instructions further comprise computer pro-
gram instruction for, responsive to detecting by a computer
that a plurality of APIs match the request components, bro-
kering for a structured API by a computer by eliminating one
or more matching structured APIs to disqualify one or more
APIs according to one or more additional criteria selected
from the group consisting of a user profile, a user history of
operations, and a context associated with the unstructured
request.

15. The system as set forth in claim 11 wherein the request-
ing client comprises a user interface to a user of a client
device.

